In This Issue
New CAN Transceiver Exhibitions Isolating CAN

Quick Links
Sensor Selector Guide Isolator Selector Guide Online Store Contact Us

In May NVE reported record quarterly product sales. Thanks to our existing and new customers for making this possible.

NVE Research Physicist Dr. Maria Torija co-authored a paper, "Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: An analysis on the validity of Maxwell relation and nature of phase transitions" at InterMag in May.

Senior Research Physicist Dr. Joe Davies co-authored a symposium, "Magnetization Reversal in Nanostructures with Magnetic Anisotropy" at the MRS Spring Meeting in San Francisco.

Recent Exhibitions
NVE products were on display at PCIM Europe and Sensor+Test 2012. Both Exhibitions were in Nürnberg, Germany.

Dr. Joe Davies of NVE chaired the "Patterned Films and Elements" session at InterMag 2012 in Vancouver.

Application Corner
You Can Isolate CAN

In today's CAN networks, standalone isolation is increasingly recommended by designers to reduce EMI susceptibility, especially in high-speed applications and Battery Management Systems. Isolation allows higher speed and more reliable CANbus operation by eliminating ground loops and reducing susceptibility to noise and EMI.

In the illustrative application below, an IL712 or IL721 isolates a stand-alone CAN transceiver from a microcontroller.

An IL41050 single-chip isolated CAN transceiver (see story above) simplifies the circuit even more, as this reference design shows:

The isolator operates on the 3.3 V microcontroller power supply, and a low-cost dc-dc converter provides 5 V to power the bus side. The PSM712 provides additional ESD protection for necessary.

For more information, watch the technical video: